
JOURNAL OF COMPUTATIONAL PHYSICS 30, 222-237 (1979) 

Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems 

G. W. HEDSTROM 

Lawrence Livermore Laboratory, University of California, Livermore, California 94550 

Received October 28, 1977; revised April 21, 1978 

Consider a nonlinear hyperbolic system L’~ + A(o)c, = 0 for x > 0 and f ,’ 0. Suppose 
that the boundary x = 0 has been introduced only in order to limit the size of a com- 
putational problem. Suppose also that on physical grounds we know that no waves cross 
the boundary from the region x < 0. We need a boundary condition at x = 0 which ex- 
presses this fact. If our problem has no strong outgoing shocks, we may use the condition 
that at x = 0 the solution v lies in the manifold generated by the Riemann invariants of the 
outgoing characteristics. For the equations of gas dynamics with an outflow boundary at 
n = 0 this condition may be written c,,yapt + c,ypul + apSt ~ 0, where a is the sound 
speed. 

1. INTRODUCTION 

In this paper we obtain a nonreflecting boundary condition at x - 0 for a nonlinear 
hyperbolic system 

Ut + A(u) 24, = 0 ((x, t) in Q, (1.1) 

4x, 0) = d-4. 

Here Q is the quadrant x > 0, t > 0. We want nonreflecting boundary conditions, 
for example, if the boundary x = 0 is present only to make a computational problem 
smaller and if the phenomenon to be modeled has no waves entering s2 at the boundary 
x = 0. Note, though, that the phrase “no waves entering Q at the boundary x = 0,” 
says more than might be expected. For one thing, our boundary condition gives no 
reflection from a simple outgoing compression wave. We know [I] that a compression 
wave will develop a shock. As the shcok forms, waves propagate along the other 
characteristics since the Riemann invariants are not constant across a shock [2]. 
So, physically, an outgoing compression wave may well give rise to incoming waves 
later. For another thing, our boundary condition gives no reflection from a slow out- 
going simple wave followed by a fast one. Physically,. however, when the fast wave 
overtakes the slow one, there may well be an echo. We show in the Appendix that this 
is the case in gasdynamics. See also [3, p. 1801. Finally, we remark that because our 
boundary condition is based on the Riemann invariants, it produces a reflection from 
an outgoing shock. This reflection is very weak, though, for a weak shock. fn order 
to get no reflection from an outgoing shock, we may well want to engage in shock 
tracking. 
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NONREFLECTING BOUNDARY CONDITIONS 223 

Others have developed nom-effecting boundary conditions for linear hyperbolic 
systems. See in particular the paper of Engquist and Majda [4], where nonreflecting 
boundary conditions are obtained for linear systems in several space dimensions. 
The paper [4] also contains a bibliography of earlier works on the subject. When 
restricted to one space dimension and applied to the linearized version of (1. I), 

Ut I- &U, = 0 Ku, t> in f?), 

with constant matrix A,, the nonreflecting boundary condition of [4] becomes 
“the characteristic variavles corresponding to incoming characteristic curves are 
constant.” It is interesting that our nonreflecting boundary condition may be phrased 
in the same way, even though our derivation is based on a point of view taking the 
nonlinearity into account. We have not obtained extensions to nonlinear systems of 
the approximate nonreflecting boundary conditions of [4] for hyperbolic systems in 
several space dimensions. 

We develop our nonreflecting boundary condition in the next section, and we apply 
it to the equations of gasdynamics in Section 3. We show the results of some com- 
putations in Section 4. 

2. NONREFLECTING BOUNDARY CONDITIONS 

Let us order the eigenvalues hj of A(u) so that 

A, < A, < ..* < A, . 

We assume that the hj are real and distinct, thus making the system (1.1) strictly 
hyperbolic. Suppose that A1 , A, ,..., A, are negative at x = 0 and that X,nL1 ,..., A, 
are positive at x = 0. Thus, we have m outgoing characteristics and n-n? incoming 
characteristics. The problem of reflection is interesting only if I -< m < n, so we 
assume that this is the case. We denote the left eigenvectors of A(u) by lj , 

ljA(U) = Xi/, (j = 1, 2 )...) n). 

With this background our nonreflecting boundary condition is as follows. 

THEOREM. The condition at x = 0 

fj . g = 0 (m < .j -< n) (2.1) 

gives no waves coming into Q.from the boundary x = 0 (f there are only simple waves 
going out. Jf a shock of strength E leaves Sz, condition (2.1) at x = 0 produces an incoming 

wave of strength O(c3). 
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Remark. The condition, “the characteristic variables corresponding to incoming 
characteristic curves are constant”, may be written 

I, . u = const (m < j < n). (2.2) 

In the linear case with constant matrix A,, the Zj are constant so that (2.2) and (2.1) 
are equivalent. 

Proof. If there is a simple wave leaving Sz, the corresponding Riemann invariants 
are constant [5, pp. 86-911. Geometrically, we may express this fact by saying that 
in a simple wave corresponding to an eigenvalue X, the values of u lie on a curve 
r, in n-dimensional u-space. Furthermore, the right eigenvector rR , 

A(u)r, = hkrlc, 

is tangent to r, [5, p. 881. That is, along r, we have 

du = clcrli . (2.3) 

Suppose that at x = 0 the vector u starts at t = 0 with a value ~(0, 0) and that simple 
waves corresponding to X, , h, ,..., h, in succession cross the boundary. In u-space 
this corresponds to families of curves r, , l-‘, ,..., r, in that order generating an 
m-dimensional manifold M. (We show in the Appendix that the order can make a 
difference.) That the manifold M is m-dimensional follows from the linear inde- 
pendence of the eigenvectors rle. 

We now show that the condition, u is in M, is equivalent to (2.1). In terms of differen- 
tials ds, along r, it follows from (2.3) that u is in M if and only if 

du = f rlc ds, . 
k=l 

The vectors Zj are orthogonal to the rk for j + k since 

(ZjA) rt = XjIj * rk , 

lj(Ark) = hklj * rg . 

Hence, if (2.4) holds, then 

I, . du = 0 (m < .i < 4. 

A simple vector-space argument, based on the fact that 

(2.4) 

(2.5) 

forms a basis, shows that if (2.5) holds, then (2.4) is true. Since du = (au/Q) dt on 
the boundary x = 0, we have shown that u is in M if and only if (2.1) holds. This 
proves that (2.1) is nonreflecting for outgoing simple waves. 
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It remains to determine how much an outgoing shock is reflected by the boundary 
condition (2.1). The boundary condition (2.1) was obtained by assuming the constancy 
of the Riemann invariants. It is known [2] that across a shock of magnitude E the 
Riemann invariants change by an amount O(E~). That is, the point u moves off the 
manifold M a distance O(E~), so that (2.4) is replaced by 

du = i rk ds,< , 
/;=1 

~ rk j dss, = O(3) (/II < k < II). 

If we impose the boundary condition (2.1) or equivalently (2.4) we get reflections 
into Q arising from the neglected terms rk ds, with k > m. Thus, the reflections have 
magnitude O(E~). This proves the theorem. 

3. APPLICATION TO GASDYNAMICS 

In one space dimension the equations of gasdynamics may be written [3, p. 28) in 
terms of the variables p, U, and S in the form 

pt + qJz + pr = 0, 
Ut + uu, + p-‘pz = 0, 

s, + us, = 0. 

Here, p is the density, u the velocity, S the specific entropy, and p the pressure. In 
the case of a polytropic ideal gas we have [3, pp. 6, 71 

P = PYY - 1) w{(S - &)hJ 

with constants y, S,, , and c, . Thus, the matrix A of (1.1) takes the form 

(3.1) 

A = (Y+’ 6 +J) 
In terms of the sound speed 

a = (YP/PY2 
the eigenvalues of A are 

A, = u - a, 

A, = u, 

A, = u + a. 

(3.2) 

(3.3) 

We assume that at the boundary x = 0 we have subsonic flow j u ! < a, so that the 
reflection problem is nontrivial. Then A, < 0 and A, > 0. If A, > 0, the boundary 
x = 0 is an inflow; if A, < 0, it is an outflow. 



226 G. W. HEDSTROM 

The left eigenvectors for (2.1) are 

12 = (0, 0, 11, (3.4) 

13 = (4 P7 ~P/(GY>>. (3.5) 

If x = 0 is an outflow boundary, the nonreflecting boundary condition (2.1) becomes 

apt + PI t q/(&y> s, = 0. (3.6) 

If x = 0 is an inflow boundary, the nonreflecting boundary condition (2.1) becomes 
(3.6) together with 

St = 0. 

Thus, the nonreflecting boundary conditions at an inflow x = 0 simplify to 

apt I pz& = 0, (3.7) 
Sf = 0. (3.8) 

It is clear that condition (3.6) may be written in terms of p, U, and T, the temperature. 
In fact, using the relations [3, pp. 4, 61 

c, dT = T dS - pd(l/p), 

P = pRT, 

we easily obtain 
T dS = c, dT - (RT/p) dp. 

Hence, since [3, pp. 6, 71 
R/c* = y- 1, 

we see that (3.6) may be written 

(T/P) pt + (yTi4 ut + Tt = 0 (3.9) 

for nonreflection at an outflow x = 0. 

4. EXAMPLES 

We now report on some computational exaples. We used the Lax-Wendroff 
method [6, pp. 300-3041 to solve the equations of gasdynamics written in Eulerian 
coordinates in conservation-law form 

(P4t + (PU2)cc + Pz = 0, 
et + (ue + UP)~ = 0, 

T = (e/p - u2/Wc, , 
p = pRT. 

(0 < x < 1, t > O), 
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In these examples the flow is subsonic and u > 0, so that x = 0 is an inflow and x :- I 
an outflow. Nonreflecting boundary conditions are used at both ends. 

Because the Lax-Wendroff method requires values of all variables at both 
boundaries, we have to supplement the nonreflecting boundary conditions with some 
sort of extrapolation. We choose to extrapolate the characteristic variables along the 
outgoing chracteristics. Note that we already found the charadteristic variables when 
we obtained the nonreflecting boundary conditions. Thus, at the inflow x = 0 we 
use conditions (3.7) and (3.10) together with differentiation along the outgoing 
characteristic 

This gives us three equations for pt , I~, and r, , and with the notion 

g = (a - ~((VP) px - (YW u, t T.r) 

we easily obtain 
Pf = gp/Gvn (4.1) 

4 = --ag@yT), (4.2) 

Tt = (Y - 1) .d(W (4.3) 

In our implementation we determine p, U, and T (and hence also pu and e) at x = 0 
and t = tn+l by discretizing (4.1)-(4.3) as follows. The coefficients are evaluated at 
x = 0 and t = t, , and derivatives are differenced in the forward direction, so that 

Similarly, at the outflow boundary x = 1 the nonreflecting boundary condition 

V/p) pt - (rW4 ut + Tt = 0 

is supplemented by differentiation along the outgoing characteristics 

(T/P) pt + (rTia> ut + T, = -(a + u)(T/p) pn + W/4 u, + TJ, 

(T/P> it - (Y - 1) Tt = --u((T/p) ~a - (Y - 1) TA 

to give a system of three equations for pt , ut , and T, . 
We remark that if equations (4.1)-(4.3) are replaced by expressions in terms of the 

fundamental variables p, pu, and e, the equations become considerably more complex. 
Formally it does not matter which set of variables we use, but once we take finite 
differences, the discretization error depends on the variables used. 

Figures 1-6 show the results of a shock-tube computation compared with the exact 
solution. The pressure is not shown, but initially the pressure is ten times as high 
on the left as it is on the right. Figures 1 and 2 show the solution before any wave 
hits a boundary. In Figs. 3 and 4 the shock has hit the right-hand boundary and pro- 
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duced a weak reflected shock. Tn Figs. 5 and 6 the contact discontinuity has passed 
out of the interval and so has part of the rarefaction wave. The reflected shock is now 
developed. (The apparent increase in the strength of the reflected shck is merely a 
manifestation of the different scales on the vertical axes.) 

Figures 7-12 show the solution of a Riemann problem having two shocks and a 
contact discontinuity. Initially, the pressure on the right is twice the pressure on the 
left, so that the shock moving to the right is weaker. In Figs. 9 and 10 the reflected 
shock on the right is too weak to be visible. It can be seen, though, in Fig. 12 because 
the scale is magnified. In fact, Fig. 12 shows the two reflected shocks just before 
they collide. The main feature in Fig. 11 is the contact discontinuity from the original 
Riemann problem, but we also see a reflected shock and contact discontinuity coming 
in from the left. 

The computations were done on a CDC 7600 computer, and an artificial viscosity 
of Lapidus type [7] was used. 

Finally, we give the strengths of the reflected shocks, measured in terms of the 
shock Mach number 

M, = (shock speed - u)/(sound speed ahead of shock). 
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For Figs. l-6 the original shock has M, = 1.676 and the reflected shock has 
M, = 1.038. For Figs. 7-12 the stronger shock to the left has M,? = 1.554 and its 
reflection has M, = 1.023, while the weaker shock to the right has M, = 1.127 
with reflection M, = 1.0014. 

APPENDIX: INTERACTION OF SIMPLE WAVES 

Consider the equations of gasdynamics from Section 3. Suppose we have a simple 
wave associated with X, overtaking a simple wave associated with h, , that is, a sound 
wave overtaking a contact discontinuity. If the waves pass through each other, we have 
the situation shown in Fig. 13. If there is an echo, we have Fig. 14. We shall show that 
Fig. 14 is the correct one. It is also what is observed in experiments [3, p. 1801. 

Before the waves meet there are three constant states, state I ahead of the waves, 
state II between them, and state III behind them. From the discussion in Section 2 
we see that states I and II lie on a curve of the family r, in state space, and states IT 
and III lie on a curve of the family T, . Figure 13 would be correct if and only if there 
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were a state 1V connected to state I by a curve of the family r, and connected to state 
III by a curve of the family r2. In the language of differential geometry we 
are asserting that the curves P, and I’, do not generate an integrable manifold. In 
order to decide the question, we look at the l-form wQ associated with the eigenvector 
I3 of (3.5), 

(We use I3 because it is orthogonal to r, and r, .) The theorem of Frobenius [8, p. 1171 
says that r, and r, generate an integrable manifold if and only if there exists a l-form 
01 such that 

We now do a routine calculation to show that no such 01 exists. It follows from (3.3), 
(3.1), and the rules for differentiating forms [8, pp. 86-891 that 

dw, = (a, dp + a, dS) A dp + dp A du 

+ (CQ-+Z dp + pa, dp + pas dS) A 6 

dw, = a/(2yc,) dp A dS + dp A du. 

If we take c1 to be 

then we have 

CL = a1 dp + cxg du + 01~ dS, 

w3 A cx = (ua, - par,) dp A du 

+ (aa3 - pW(c,~>) dp A ds + @a3 - pa~21(cuY)) du A ds. 

Hence, dw, = w3 A cy. if and only if 

-pa1 + aa, = 1, 

-wdW + aa = a/@,34 
--Pa~2/(w) + pa3 = 0. 

A direct Gaussian elimination shows that these equations are inconsistent. Hence, 
no 01 exists such that dw, = w3 A 01, and no state IV exists to make Fig. 13 correct. 

The correct interaction is shown in Fig. 14. Note that the simple waves corre- 
sponding to h, and h, pass through each other without creating any contact discon- 
tinuity. This may be seen either from the fact that the entropy does not change 
[3, p. 1801 or from the fact that by (3.4) we have 

so that 
w2 = dS, 

dw, = w2 A 0. 
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We conclude by stating the general criterion for determining whether an interaction 
between simple waves for (1 .I) corresponding to eigenvalues A, , A, ,..., A, produces 
waves associated with other eigenvalues. This is just Frobenius’ theorem. We first 
assign to each left eigenvector 

a l-form 
lj = (lj1 Y ljS >...> ljn) (.i > m> 

wj = c ljk(U) du, . 
k 

We then compute dwj using the rules 

du, A duk = -duk A du, , 

duk A du, = 0. 

Finally, we check by Gaussian elimination whether there exist l-forms 

ejq = Thq, du, Cm < 4 G n> 

such that 
doj = C wq A aj, 

q>m 
(m < .i d n). 

If such ajq exist, no new waves of speeds h,+I ,..., A, are produced. Otherwise, we 
do get such waves. 
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